Четверг, 21.11.2024, 16:25                                                                    ОБРАЗОВАТЕЛЬНЫЙ    ПОРТАЛ
Приветствую Вас Гость | Регистрация | Вход

З  В  О  Н  О  К   НА   У  Р  О  К

Было бы желание - найдешь на сайте знания!

Вы вошли как Гость | Группа "Гости" | 

НАГЛЯДНЫЕ МАТЕРИАЛЫ ДЛЯ ОФОРМЛЕНИЯ СТЕНДОВ  РАБОТА С ОДАРЕННЫМИ ДЕТЬМИ
МЕНЮ САЙТА

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА В ШКОЛЕ

ЕГЭ ПО ЛИТЕРАТУРЕ

ВЕЛИКИЕ ПИСАТЕЛИ

ИЗУЧЕНИЕ ТВОРЧЕСТВА
   ГОГОЛЯ


50 КНИГ ИЗМЕНИВШИХ
   ЛИТЕРАТУРУ


ТРЕНИНГИ "ТВОРЧЕСКАЯ
   ЛАБОРАТОРИЯ УЧИТЕЛЯ
    ЛИТЕРАТУРЫ"


ТЕМАТИЧЕСКОЕ
   ОЦЕНИВАНИЕ ПО
   ЛИТЕРАТУРЕ В 11 КЛАССЕ


ОЛИМПИАДА ПО
   ЛИТЕРАТУРЕ. 10 КЛАСС


ЛИТЕРАТУРНЫЕ РЕБУСЫ
   ПО ТВОРЧЕСТВУ ПОЭТОВ
   СЕРЕБРЯНОГО ВЕКА


ИНОСТРАННЫЕ ЯЗЫКИ

ТЕМАТИЧЕСКИЕ КАРТОЧКИ
   ПО АНГЛИЙСКОМУ ЯЗЫКУ


КАК УЧИТЬ АНГЛИЙСКИЕ
   СЛОВА ЭФФЕКТИВНО


АНГЛИЙСКИЕ ВРЕМЕНА В
   ТЕКСТАХ И УПРАЖНЕНИЯХ


РАЗДАТОЧНЫЙ МАТЕРИАЛ
   ПО АНГЛИЙСКОМУ ЯЗЫКУ


200 АНГЛИЙСКИЙ ВЫРАЖЕНИЙ.
   ТЕХНИКА ЗАПОМИНАНИЯ


КОНТРОЛЬНЫЕ РАБОТЫ В
   ФОРМАТЕ ЕГЭ ПО
   АНГЛИЙСКОМУ ЯЗЫКУ


ТИПОВЫЕ ВАРИАНТЫ
   ЗАДАНИЙ ЕГЭ ПО
   АНГЛИЙСКОМУ ЯЗЫКУ


ГРАММАТИКА
   ИСПАНСКОГО ЯЗЫКА


ФРАНЦУЗСКИЙ ЯЗЫК

ФРАНЦУЗСКИЕ СЛОВА.
   ВИЗУАЛЬНОЕ
   ЗАПОМИНАНИЕ


ГРАММАТИКА
   ФРАНЦУЗСКОГО ЯЗЫКА


ВНУТРИШКОЛЬНЫЙ КОНТРОЛЬ
   ПО ФРАНЦУЗСКОМУ ЯЗЫКУ


ИСТОРИЯ В ШКОЛЕ

БИОЛОГИЯ В ШКОЛЕ

МАТЕМАТИКА В ШКОЛЕ

ФИЗИКА В ШКОЛЕ

ХИМИЯ В ШКОЛЕ

Категории раздела
ИСТОРИЯ ХИМИИ [58]
ХИМИЯ - ЭТО ИНТЕРЕСНО [124]
МИР, СОЗДАННЫЙ ХИМИКАМИ [52]
ШКОЛЬНИКАМ О ПРЕВРАЩЕНИИ ЭЛЕМЕНТОВ [25]
ЗАНИМАТЕЛЬНО О ХИМИИ [107]
СТИХОТВОРЕНИЯ К УРОКАМ ХИМИИ [12]

Статистика

Онлайн всего: 7
Гостей: 7
Пользователей: 0
Форма входа


Главная » Статьи » УВЛЕКАТЕЛЬНАЯ ХИМИЯ » ИСТОРИЯ ХИМИИ

Изомеры и радикалы

Когда химики попытались применить представления атомистической теории к молекулам тех простых неорганических соединений, с изучением которых связаны выдающиеся успехи химии XVIII в., то выяснилось, что такой подход вполне допустим. Достаточно указать различные виды атомов, входящих в состав каждой молекулы, и их число. Молекулу кислорода можно записать как O2, хлористого водорода — как HCl, аммиака — как NH3, сульфата натрия — как Na2SO4 и т. д.

Такие формулы, показывающие только число атомов каждого вида в молекуле, называются эмпирическими (эмпирический — установленный экспериментально). В эти первые десятилетия XIX в. считались, что для каждого соединения характерна своя собственная эмпирическая формула и что у двух различных соединений она не может быть одинаковой.

С органическими соединениями, молекулы которых отличались внушительными размерами, дело обстояло сложнее. Используя методы начала XIX в., было очень тяжело, вероятно и невозможно, установить точную эмпирическую формулу даже такого довольно простого по сравнению, например, с белками органического соединения, как морфин. В настоящее время известно, что в молекуле морфина содержатся 17 атомов углерода, 19 атомов водорода, 3 атома кислорода и 1 атом азота (C17H18NO3). Эмпирическая формула уксусной кислоты (C2H4O2) намного проще, чем формула морфина, но и относительно этой формулы в первой половине XIX в. не было единого мнения. Однако, поскольку химики собирались изучать строение молекул органических веществ, начинать им необходимо было с установления эмпирических формул.

В 80-х годах XVIII столетия Лавуазье пытался определить относительное содержание углерода и водорода в органических соединениях. Он сжигал изучаемое соединение и взвешивал выделившиеся углекислый газ и воду. Результаты такого определения были не очень точными. В первые годы XIX в. Гей-Люссак (автор закона объемных отношений, см. гл. 5) и его коллега французский химик Луи Жак Тенар (1777—1857) усовершенствовал этот метод. Они сначала смешивали изучаемое органическое соединение с окислителем и лишь потом сжигали. Окислитель, например хлорат калия, при нагревании выделяет кислород, который хорошо смешивается с органическим веществом, в результате чего сгорание происходит быстрее и полнее. Собирая выделяющиеся при сгорании углекислый газ и воду, Гей-Люссак и Тенар могли определить соотношение углерода и водорода в исходном соединении. С помощью усовершенствованной к тому времени теории Дальтона это соотношение можно было выразить в атомных величинах.

В состав многих органических соединений входят только углерод, водород и кислород, поэтому, определив содержание углерода и водорода, во многих случаях можно было установить эмпирическую формулу соединения. В 1811 г. Гей-Люссак и Тенар составили эмпирические формулы около двадцати органических соединений, в том числе некоторых простых сахаров.

Немецкий химик Юстус Либих (1803—1873) усовершенствовал методику анализа и в 1831 г. смог получить весьма достоверные эмпирические формулы. Два года спустя французский химик Жан Батист Андре Дюма (1800—1884) модифицировал метод Либиха. Пользуясь разработанным им методом, можно было наряду с прочими продуктами сгорания собирать также и азот и, следовательно, определять содержание азота в органическом веществе.

Эти основоположники органического анализа в процессе своих исследований получили такие результаты, которые пошатнули веру в важность эмпирической формулы. Случилось это следующим образом.

В 1824 г. Либих изучал фульминаты — соли гремучей кислоты, а Вёлер (который со временем станет верным другом Либиха и вскоре синтезирует мочевину, см. разд. «Крушение витализма») изучал цианаты — соли циановой кислоты. Оба ученых послали сообщения о своих работах в журнал, издаваемый Гей-Люссаком.

Читая сообщения, Гей-Люссак отметил, что эмпирические формулы этих соединений идентичны, хотя описанные свойства совершенно различны. Так, в молекулах и цианата и фульмината серебра содержится по одному атому серебра, углерода, азота и кислорода. Гей-Люссак сообщил об этих наблюдениях Берцелиусу, который считался тогда самым выдающимся химиком в мире, но Берцелиус не пожелал поверить в это открытие. Однако к 1830 г. Берцелиус сам установил, что две органические кислоты — виноградная и винная — хотя и обладают различными свойствами, описываются одной и той же эмпирической формулой (как теперь установлено, С4Н6О6). Поскольку соотношения элементов в этих различных соединениях было одинаковым, Берцелиус предложил называть такие соединения изомерами (от греческих слов ίόν — равный, одинаковый и μερός — часть, доля). Его предложение было принято. В последующие десятилетия число открытых изомеров быстро росло.

Казалось очевидным, что, если две молекулы построены из одинакового числа одних и тех же атомов и все же обладают различными свойствами, различие коренится в способе расположения атомов внутри молекулы. В простых молекулах неорганических соединений атомы могут, вероятно, располагаться только одним каким-либо способом. Изомеров у таких соединений просто не может быть, и для их характеристики вполне достаточно эмпирической формулы. Так, Н2О — это вода и ничего больше.

В более сложных органических молекулах расположение атомов может быть различным, и, следовательно, возможно существование изомеров. Различие в расположении атомов в молекулах цианатов и фульминатов легко обнаружить, так как каждая молекула содержит всего несколько атомов. Формулу цианата серебра можно записать как AgOCN, а формулу фульмината — как AgNCO.

При большем количестве атомов число возможных вариантов расположения возрастает настолько, что трудно становится решить, какому соединению соответствует какое расположение. Даже вопрос о строении виноградной и винной кислот, молекулы которых содержат по шестнадцати атомов, для химиков первой половины XIX в. был чрезвычайно сложен, и могло показаться, что установить строение еще больших молекул просто не удастся.

Проблему строения молекул почти сразу же можно было бы отвергнуть как нерешаемую, если бы не появилась возможность упростить ее.

С 1810 г. Гей-Люссак и Тенар работали над цианидом водорода HCN, который, как они показали, представляет собой кислоту, хотя и не содержит кислорода. (Это открытие, как и открытие Дэви, установившего примерно в то же время, что хлорид водорода — кислота, опровергали представление Лавуазье о том, что кислород является характерным элементом кислот.) Гей-Люссак и Тенар обнаружили, что группа CN (цианидная группа) может переходить от соединения к соединению, не разлагаясь на отдельные атомы углерода и азота. Группа CN ведет себя во многом как единичный атом хлора или брома, поэтому цианид натрия NaCN имеет некоторые общие свойства с хлоридом натрия NaCl и бромидом натрия NaBr.

Группа из двух (или более) атомов, способная переходить без изменения из одной молекулы в другую, была названа радикалом (от латинского radical — корень). Такое название эти группы получили по следующей причине. В то время считалось, что молекулы могут состоять из ограниченного числа небольших групп атомов и радикалы являются именно теми «корнями», из которых, так сказать, «вырастает» молекула.

Конечно, группа CN относится к числу простейших, однако Вёлер и Либих в своей совместной работе показали, что бензоильная группа, как и цианидная, может переходить без разрушения из одной молекулы в другую. Эмпирическая формула бензоильной группы, как в настоящее время установлено, C7H5O.

Короче говоря, становилось ясно, что открыть тайну строения больших молекул можно, лишь установив строение определенного числа различных радикалов. Тогда не составит большого труда (как надеялись химики того времени) построить из радикалов молекулы. Дело спорилось!
Категория: ИСТОРИЯ ХИМИИ | Добавил: admin (18.07.2013)
Просмотров: 1370 | Теги: История химии, дидактический материал по химии, химия в школе, хрестоматия по химии, дополнительный материал к урокам хи, Занимательная Химия | Рейтинг: 0.0/0
Поиск

ИНФОРМАТИКА В ШКОЛЕ

ЭНЦИКЛОПЕДИЯ
   ПРОФЕССОРА ФОРТРАНА


ЭНЦИКЛОПЕДИЯ
   ШКОЛЬНИКА "КОМПЬЮТЕР"


ПРАКТИКУМ ПО
   МОДЕЛИРОВАНИЮ.
   7-9 КЛАССЫ


РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ
   ПО ПРОГРАММИРОВАНИЮ
   НА ЯЗЫКЕ PASCAL


ПОДГОТОВКА К ЕГЭ
   ПО ИНФОРМАТИКЕ


ДИАГНОСТИЧЕСКИЕ
   РАБОТЫ ПО
   ИНФОРМАТИКЕ. 11 КЛАСС


ГЕОГРАФИЯ В ШКОЛЕ

ГЕОГРАФИЧЕСКАЯ
   ЭНЦИКЛОПЕДИЯ


ЗАНИМАТЕЛЬНАЯ
   ГЕОГРАФИЯ


ЭНЦИКЛОПЕДИЯ
   ГЕОГРАФИЯ РОССИИ


СПРАВОЧНИК ДЛЯ ШКОЛЬНИКОВ
   ПО ГЕОГРАФИИ


ЗАГАДКИ ТОПОНИМИКИ

ФИТОГЕОГРАФИЯ ДЛЯ
   ШКОЛЬНИКОВ


РУССКИЕ
   ПУТЕШЕСТВЕННИКИ


ПЕРВООТКРЫВАТЕЛИ

ГЕОГРАФИЯ ЧУДЕС

СОКРОВИЩА ЗЕМЛИ

МОРЯ И ОКЕАНЫ

ВУЛКАНЫ

СТИХИЙНЫЕ БЕДСТВИЯ

ЗАГАДКИ МАТЕРИКОВ И
   ОКЕАНОВ


ЗНАКОМЬТЕСЬ: ЕВРОПА

ЗНАКОМЬТЕСЬ: АФРИКА

ПОГОДА. ЧТО, КАК И
   ПОЧЕМУ?


ШКОЛЬНИКАМ О
   СЕВЕРНОМ СИЯНИИ


ГЕОГРАФИЯ.
   ЗЕМЛЕВЕДЕНИЕ. 6 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ
   ПО ГЕОГРАФИИ


ТИПОВЫЕ ВАРИАНТЫ
   КОНТРОЛЬНЫХ РАБОТ
   В ФОРМАТЕ ЕГЭ


ПОДГОТОВКА К ЕГЭ
   ПО ГЕОГРАФИИ


АСТРОНОМИЯ В ШКОЛЕ

КАРТОЧКИ ПО
   АСТРОНОМИИ


ЭНЦИКЛОПЕДИЯ
   ШКОЛЬНИКА "КОСМОС И
   ВСЕЛЕННАЯ"


ЗАДАЧИ ДЛЯ ОЛИМПИАДЫ
   ПО АСТРОНОМИИ. 10-11 КЛАССЫ
   КЛАССЫ"


ПРОВЕРОЧНЫЕ РАБОТЫ
   ПО АСТРОНОМИИ


ОБЩЕСТВОЗНАНИЕ

ИНТЕРЕСНОЕ
   ОБЩЕСТВОВЕДЕНИЕ


ЧЕЛОВЕКОВЕДЕНИЕ
   ДЛЯ ШКОЛЬНИКОВ


РАБОЧИЕ МАТЕРИАЛЫ ПО
   ОБЩЕСТВОЗНАНИЮ.
   8 КЛАСС


ТЕМАТИЧЕСКИЕ
   КОНТРОЛЬНЫЕ РАБОТЫ
   ПО ОБЩЕСТВОЗНАНИЮ.
   8 КЛАСС


ПОДГОТОВКА К ЕГЭ

ТИПОВЫЕ ТЕСТЫ В
   ФОРМАТЕ ЕГЭ


ОСНОВЫ РЕЛИГИОЗНЫХ КУЛЬТУР И СВЕТСКОЙ ЭТИКИ

МАТЕРИАЛЫ ДЛЯ
   УЧИТЕЛЯ


ХРИСТИАНСТВО

ЖИТИЯ СВЯТЫХ
    В КАРТИНКАХ


ПУТЕВОДИТЕЛЬ ПО МИРОВОЙ ХУДОЖЕСТВЕННОЙ КУЛЬТУРЕ

БОГИ ОЛИМПА

ЗАНИМАТЕЛЬНАЯ
   МИФОЛОГИЯ


РУССКИЕ НАРОДНЫЕ
   ПРОМЫСЛЫ


ШКОЛЬНИКАМ О МУЗЕЯХ

СКУЛЬПТУРА

ЧУДЕСА СВЕТА

ДОСТОПРИМЕЧАТЕЛЬНОСТИ
   МОСКВЫ


ДОСТОПРИМЕЧАТЕЛЬНОСТИ
   САНКТ-ПЕТЕРБУРГА



ИЗО В ШКОЛЕ

ОСНОВЫ РИСУНКА ДЛЯ
   УЧЕНИКОВ 5-8 КЛАССОВ


УРОКИ ПОШАГОВОГО
   РИСОВАНИЯ


РУССКИЕ ЖИВОПИСЦЫ


ФИЗКУЛЬТУРА В ШКОЛЕ

Я УЧИТЕЛЬ ФИЗКУЛЬТУРЫ

ИСТОРИЯ ОЛИМПИЙСКИХ
   ИГР


УРОКИ КУЛЬТУРЫ
   ЗДОРОВЬЯ


УПРАЖНЕНИЯ И ИГРЫ
   С МЯЧОМ


УРОКИ ФУТБОЛА

АТЛЕТИЧЕСКАЯ
   ГИМНАСТИКА


ЛЕЧЕБНАЯ ФИЗКУЛЬТУРА
   В СПЕЦИАЛЬНОЙ ГРУППЕ


УПРАЖНЕНИЯ НА
   РАСТЯЖКУ


АТЛЕТИЗМ БЕЗ ЖЕЛЕЗА


ТЕХНОЛОГИЯ В ШКОЛЕ

РАБОЧИЕ МАТЕРИАЛЫ ПО
   ТЕХНОЛОГИИ ДЛЯ
   ДЕВОЧЕК. 6 КЛАСС


УРОКИ КУЛИНАРИИ В
   5 КЛАССЕ


КАРТОЧКИ ДЛЯ
    ОПРОСА ПО ТЕХНОЛОГИИ. 5 КЛАСС


ПРАКТИКУМ ПО
   СЛЕСАРНЫМ РАБОТАМ


ВЫПИЛИВАНИЕ ИЗ ФАНЕРЫ


ЭРУДИТ-КОМПАНИЯ

МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЕЙ

АФОРИЗМЫ

АФОРИЗМЫ ОБ
   ОБРАЗОВАНИИ


АФОРИЗМЫ ОБ УЧИТЕЛЕ
   И УЧЕНИКЕ


Яндекс.Метрика Copyright MyCorp © 2024 Рейтинг@Mail.ru