В 1865–1870 гг. появился во Франции
фантастический роман Жюля Верна «Из пушки на Луну», в котором высказана
необычайная мысль: послать на Луну исполинский пушечный снаряд-вагон с
живыми людьми! Жюль Берн представил свой проект в столь правдоподобном
виде, что у большинства читателей, наверное, возникал вопрос: нельзя ли в
самом деле осуществить эту мысль? Об этом интересно побеседовать
[Теперь, после запуска искусственных спутников Земли и космических
ракет, мы можем сказать, что для космических путешествий будут
использоваться ракеты, а не снаряды. Однако движение ракеты, после того
как сработала ее последняя ступень, подчиняется тем же законам, что и
движение артиллерийского снаряда. Поэтому текст автора не устарел].
Сначала рассмотрим, можно ли — хотя бы
теоретически — выстрелить из пушки так, чтобы снаряд никогда не упал
назад, на Землю. Теория допускает такую возможность. В самом деле,
почему снаряд, горизонтально выброшенный пушкой, в конце концов падает
на Землю? Потому что Земля, притягивая снаряд, искривляет его путь: он
летит не по прямой линии, а по кривой, направленной к Земле, и поэтому
рано или поздно встречается с почвой. Земная поверхность, правда, тоже
искривлена, но путь снаряда изгибается гораздо круче. Если же кривизну
пути снаряда ослабить и сделать ее одинаковой с искривлением поверхности
земного шара, то такой снаряд никогда не сможет упасть на Землю! Он
будет двигаться по кривой, концентрической с окружностью земного шара;
другими словами, сделается его спутником, как бы второй Луной.
Но как добиться, чтобы снаряд,
выброшенный пушкой, шел по пути, менее искривленному, чем земная
поверхность? Для этого необходимо только сообщить ему достаточную
скорость. Обратите внимание на рис. 1, изображающий разрез части
земного шара.
На горе, высотой которой будем
пренебрегать, в точке A стоит пушка. Снаряд, горизонтально выброшенный
ею, был бы через секунду в точке B, если бы не существовало притяжения
Земли. Но притяжение меняет дело, и под действием этой силы снаряд через
секунду скажется не в точке B, а на 5 м ниже, в точке C. Пять метров —
это путь, проходимый (в пустоте) каждым свободно падающим телом в первую
секунду под действием силы тяжести близ поверхности Земли. Если,
опустившись на эти 5 м, снаряд наш окажется над уровнем Земли ровно
настолько же, насколько был он в точке A, то, значит, он движется по
кривой, концентрической с окружностью земного шара.
Рис. 1. Вычисление скорости снаряда, который должен навсегда покинуть Землю.
Остается вычислить отрезок АВ (рис. 1),
т. е. тот путь, который проходит снаряд в секунду по горизонтальному
направлению; мы узнаем тогда, с какой секундной скоростью нужно для
нашей цели выбросить снаряд из жерла пушки. Вычислить это нетрудно из
треугольника АОВ, в котором ОА — радиус земного шара (около 6 370
000 м); ОС = ОА, ВС = 5 м; следовательно, 0В = 6 370 005 м. Отсюда по
теореме Пифагора имеем: (AB)2 = (6 370 005)2 — (6 370 000)2.
Сделав вычисление, находим, что путь AB равен примерно 8 км.
Итак, если бы не было воздуха, который
сильно мешает быстрому движению, снаряд, выброшенный горизонтально из
пушки со скоростью 8 км/сек, никогда не упал бы на Землю, а вечно
кружился бы вокруг нее, подобно спутнику.
А если выбросить снаряд из пушки с еще
большей скоростью, — куда полетит он? В небесной механике доказывается,
что при скорости в 8, 9, даже 10 км/сек снаряд, вылетев из жерла пушки,
должен описывать вокруг земного шара эллипс тем более вытянутый, чем
больше начальная скорость. При скорости же снаряда 11,2 км/сек он вместо
эллипса опишет уже незамкнутую кривую — параболу, навсегда удаляясь от
Земли (рис. 2).
Мы видим, следовательно, что теоретически
мыслимо полететь на Луну внутри снаряда, выброшенного с достаточно
большой скоростью [Тут могут представиться, однако, затруднения совсем
особого рода. Подробнее вопрос этот рассматривается во второй книге
«Занимательной физики», а также в другой моей книге — «Межпланетные
путешествия»].
Рис. 2. Судьба пушечного снаряда, выпущенного с начальной скоростью 8 км/сек и более.
(Предыдущее рассуждение имело в виду
атмосферу, не препятствующую движению снарядов. В реальных условиях
наличие сопротивляющейся атмосферы чрезвычайно затруднило бы получение
таких высоких скоростей, а быть может, сделало бы их совершенно
недостижимыми.) |