Суббота, 13.04.2024, 19:29                                                                    ОБРАЗОВАТЕЛЬНЫЙ    ПОРТАЛ
Приветствую Вас Гость | Регистрация | Вход

З  В  О  Н  О  К   НА   У  Р  О  К

Было бы желание - найдешь на сайте знания!

Вы вошли как Гость | Группа "Гости" | 

НАГЛЯДНЫЕ МАТЕРИАЛЫ ДЛЯ ОФОРМЛЕНИЯ СТЕНДОВ  РАБОТА С ОДАРЕННЫМИ ДЕТЬМИ
МЕНЮ САЙТА

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА В ШКОЛЕ

ЕГЭ ПО ЛИТЕРАТУРЕ

ВЕЛИКИЕ ПИСАТЕЛИ

ИЗУЧЕНИЕ ТВОРЧЕСТВА
   ГОГОЛЯ


50 КНИГ ИЗМЕНИВШИХ
   ЛИТЕРАТУРУ


ТРЕНИНГИ "ТВОРЧЕСКАЯ
   ЛАБОРАТОРИЯ УЧИТЕЛЯ
    ЛИТЕРАТУРЫ"


ТЕМАТИЧЕСКОЕ
   ОЦЕНИВАНИЕ ПО
   ЛИТЕРАТУРЕ В 11 КЛАССЕ


ОЛИМПИАДА ПО
   ЛИТЕРАТУРЕ. 10 КЛАСС


ЛИТЕРАТУРНЫЕ РЕБУСЫ
   ПО ТВОРЧЕСТВУ ПОЭТОВ
   СЕРЕБРЯНОГО ВЕКА


ИНОСТРАННЫЕ ЯЗЫКИ

ТЕМАТИЧЕСКИЕ КАРТОЧКИ
   ПО АНГЛИЙСКОМУ ЯЗЫКУ


КАК УЧИТЬ АНГЛИЙСКИЕ
   СЛОВА ЭФФЕКТИВНО


АНГЛИЙСКИЕ ВРЕМЕНА В
   ТЕКСТАХ И УПРАЖНЕНИЯХ


РАЗДАТОЧНЫЙ МАТЕРИАЛ
   ПО АНГЛИЙСКОМУ ЯЗЫКУ


200 АНГЛИЙСКИЙ ВЫРАЖЕНИЙ.
   ТЕХНИКА ЗАПОМИНАНИЯ


КОНТРОЛЬНЫЕ РАБОТЫ В
   ФОРМАТЕ ЕГЭ ПО
   АНГЛИЙСКОМУ ЯЗЫКУ


ТИПОВЫЕ ВАРИАНТЫ
   ЗАДАНИЙ ЕГЭ ПО
   АНГЛИЙСКОМУ ЯЗЫКУ


ГРАММАТИКА
   ИСПАНСКОГО ЯЗЫКА


ФРАНЦУЗСКИЙ ЯЗЫК

ФРАНЦУЗСКИЕ СЛОВА.
   ВИЗУАЛЬНОЕ
   ЗАПОМИНАНИЕ


ГРАММАТИКА
   ФРАНЦУЗСКОГО ЯЗЫКА


ВНУТРИШКОЛЬНЫЙ КОНТРОЛЬ
   ПО ФРАНЦУЗСКОМУ ЯЗЫКУ


ИСТОРИЯ В ШКОЛЕ

БИОЛОГИЯ В ШКОЛЕ

МАТЕМАТИКА В ШКОЛЕ

ФИЗИКА В ШКОЛЕ

ХИМИЯ В ШКОЛЕ

Категории раздела
НАЧАЛЬНЫЕ КЛАССЫ [22]
МАТЕМАТИКА [4]
ФИЗИКА [37]
ИНФОРМАТИКА [22]
ХИМИЯ [23]
БИОЛОГИЯ [20]
ГЕОГРАФИЯ [42]
ИСТОРИЯ [37]
МУЗЫКА [24]
ОБЖ [40]

Статистика

Онлайн всего: 3
Гостей: 3
Пользователей: 0
Форма входа


Главная » Файлы » ДИДАКТИЧЕСКИЙ МАТЕРИАЛ К УРОКАМ » ФИЗИКА

Строение вещества
27.05.2012, 21:35

Внутримолекулярные связи

Молекулы состоят из атомов. Атомы связаны в молекулы силами, которые называют химическими силами.

Существуют молекулы, состоящие из двух, трех, четырех атомов. Крупнейшие молекулы - молекулы белков - состоят из десятков и даже сотен тысяч атомов.

Царство молекул исключительно разнообразно. Уже сейчас химики выделили из природных веществ и создали в лабораториях миллионы веществ, построенных из различных молекул.

Свойства молекул определяются не только тем, сколько атомов того или иного сорта участвует в их постройке, но и тем, в каком порядке и в какой конфигурации они соединены. Молекула - это не груда кирпичей, а сложная архитектурная постройка, где каждый кирпич имеет свое место и своих вполне определенных соседей. Атомная постройка, образующая молекулу, может быть в большей или меньшей степени жесткой. Во всяком случае, каждый из атомов совершает колебания около своего положения равновесия. В некоторых же случаях одни части молекулы могут вращаться по отношению к другим частям, придавая свободной молекуле в процессе ее теплового движения различные и самые причудливые конфигурации.

Разберем подробнее взаимодействие атомов. На рис. 2.1 изображена кривая потенциальной энергии двухатомной молекулы. Она имеет характерный вид - сначала идет вниз, затем загибается, образуя "яму", и потом более медленно приближается к горизонтальной оси, по которой отложено расстояние между атомами.


Рис. 2.1

Мы знаем, что устойчиво состояние, в котором потенциальная энергия имеет наименьшее значение. Когда атом входит в состав молекулы, он "сидит" в потенциальной яме, совершая небольшие тепловые колебания около положения равновесия.

Расстояние от вертикальной оси до дна ямы можно назвать равновесным. На этом расстоянии расположились бы атомы, если бы прекратилось тепловое движение.

Кривая потенциальной энергии рассказывает о всех деталях взаимодействия между атомами. Притягиваются или отталкиваются частицы на том или ином расстоянии, возрастает или убывает сила взаимодействия при отдалении или сближении частиц - все эти сведения можно получить из анализа кривой потенциальной энергии. Точки левее "дна" соответствуют отталкиванию. Напротив, участки кривой правее дна ямы характеризуют притяжение. Важные сведения сообщает и крутизна кривой: чем круче идет кривая, тем больше сила.

Находясь на больших расстояниях, атомы притягиваются один к другому; эта сила весьма быстро уменьшается с увеличением расстояния между ними. При сближении сила притяжения возрастает и достигает наибольшего значения уже тогда, когда атомы подойдут один к другому очень близко. При еще большем сближении притяжение ослабевает и, наконец, на равновесном расстоянии сила взаимодействия обращается в нуль. При сближении атомов на расстояние, меньшее равновесного, возникают силы отталкивания, которые очень резко нарастают и быстро делают практически невозможным дальнейшее уменьшение расстояния между атомами.

Равновесные расстояния (ниже мы будем говорить короче - расстояния) между атомами различны для разных сортов атомов.

Для разных пар атомов различны не только расстояния от вертикальной оси до дна ямы, но и глубина ям.

Глубина ямы имеет простой смысл: чтобы выкатиться из ямы, нужна энергия, как раз равная глубине. Поэтому глубину ямы можно назвать энергией связи частиц.

Расстояния между атомами молекул столь малы, что для их измерения надо выбрать подходящие единицы, иначе пришлось бы выражать их значения, например, в таком виде: 0,000000012 см. Это цифра для молекулы кислорода.

Единицы, особенно удобные для описания атомного мира, называются ангстремами (правда, фамилия шведского ученого, именем которого названы эти единицы, правильно читается Онгстрем; для напоминания об этом над буквой А ставят кружок):


т. е. одной стомиллионной доле сантиметра.

Расстояния между атомами молекул лежат в пределах от 1 до 4Å. Написанное выше равновесное расстояние для кислорода равно 1,2 Å.

Межатомные расстояния, как вы видите, очень малы. Если опоясать земной шар веревкой у экватора, то длина "пояса" во столько же раз будет больше ширины вашей ладони, во сколько раз ширина ладони больше расстояния между атомами молекулы.

Для измерения энергии связи пользуются обычно калориями, но относят их не к одной молекуле, что дало бы, разумеется, ничтожную цифру, а к одному молю, т.е. к NA молекулам.

Ясно, что энергия связи на один моль, если ее поделить на число Авогадро NA=6,023*1023 моль-1, даст энергию связи одной молекулы.

Энергия связи атомов в молекуле, как и межатомные расстояния, колеблется в незначительных пределах.

Для того же кислорода энергия связи равна 116 000 кал/моль, для водорода 103 000 кал/моль и т. д.

Мы уже говорили, что атомы в молекулах располагаются вполне определенным образом одни по отношению к другим, образуя в сложных случаях весьма замысловатые постройки.

Приведем несколько простых примеров.


Рис. 2.2

В молекуле С02 (углекислый газ) все три атома расположены в ряд - атом углерода посередине. Молекула воды Н20 имеет уголковую форму, вершиной угла (он равен 105°) является атом кислорода.

В молекуле аммиака NH3 атом азота находится в вершине трехгранной пирамиды; в молекуле метана СН4 атом углерода находится в центре четырехгранной фигуры с равными сторонами, которая называется тетраэдром.


Рис. 2.3

Атомы углерода бензола С6Н6 образуют правильный шестиугольник. Связи атомов углерода с водородом идут от всех вершин шестиугольника. Все атомы расположены в одной плоскости.

Схемы расположения центров атомов этих молекул показаны на рис. 2.2 и 2.3. Линии символизируют связи.

Прошла химическая реакция; были молекулы одного сорта, образовались другие. Одни связи порваны, другие созданы вновь. Для разрыва связей между атомами - вспомните рисунок - нужно затратить такую же работу, как при выкатывании шара из ямы. Напротив, при образовании новых связей энергия выделяется - шар скатывается в яму.

Что больше, работа разрыва или работа созидания? В природе мы сталкиваемся с реакциями обоих типов.

Излишек энергии называется тепловым эффектом или иначе - теплотой превращения (реакции). Тепловые эффекты реакций - это большей частью величины порядка десятков тысяч калорий при расчете на моль. Очень часто тепловой эффект включают в качестве слагаемого в формулу реакции.

Например, реакция сгорания углерода (в виде графита), т. е. соединения его с кислородом, пишется так:


Это значит, что при соединении углерода с кислородом выделяется энергия 94 250 калорий. Сумма внутренних энергий моля углерода и моля кислорода в графите равняется внутренней энергии моля углекислого газа плюс 94 250 калорий.

Таким образом, подобные записи имеют ясный смысл алгебраических равенств, записанных для величин внутренней энергии.

С помощью таких уравнений можно найти тепловые эффекты превращений, для которых не годятся по тем или иным причинам прямые способы измерения. Вот пример: если бы углерод (графит) соединить с водородом, то образовался бы газ ацетилен:

Реакция не идет таким путем. Тем не менее можно найти ее тепловой эффект. Запишем три известные реакции -

окисление углерода:

окисление водорода:

окисление ацетилена:

Все эти равенства можно рассматривать как уравнения для энергий связи молекул. Если так, то ими можно оперировать как алгебраическими равенствами. Вычитая из нижнего два верхних, получим

Значит, интересующее нас превращение сопровождается поглощением 56 000 калорий на один моль.


Физическая и химическая молекулы

До того как исследователи получили детальное представление о структуре вещества, такого различия не делалось. Молекула есть молекула, т. е. мельчайший представитель вещества. Казалось бы, этим все сказано. Однако дело обстоит не так.

Те молекулы, о которых мы сейчас рассказали, являются молекулами в обоих смыслах слова. Молекулы углекислого газа, аммиака, бензола, о которых мы говорили, и молекулы практически всех органических веществ (о которых мы не говорили) состоят из атомов, которые сильно связаны друг с другом. При растворении, плавлении, испарении эти связи не разрываются. Молекула продолжает себя вести как отдельная частичка, как маленькое физическое тело при любых физических воздействиях и изменениях состояния.

Но так обстоит дело далеко не всегда. Для большинства неорганических веществ о молекуле можно говорить лишь в химическом смысле этого слова. А вот мельчайшей частички таких общеизвестных неорганических веществ, как поваренная соль или кальцит, или сода, не существует. Мы не находим отдельных частичек в кристаллах (об этом будет рассказано через несколько страниц); при растворении молекулы распадаются на части.

Сахар - органическое вещество. Поэтому в воде сладкого чая "плавают" молекулы сахара. А вот в соленой воде никаких молекул поваренной соли (хлористого натрия) мы не найдем. Эти "молекулы" (приходится ставить кавычки) существуют в воде в виде атомов (а точнее, ионов - электрически заряженных атомов,- о них речь впереди).

Так же точно и в парах, и в расплавах части молекул живут самостоятельной жизнью.

Когда речь идет о силах, связывающих атомы в физическую молекулу, то такие силы называют валентными. Межмолекулярные силы являются невалентными. Однако тип кривой взаимодействия, который был показан на рис. 2.1, одинаков в обоих случаях. Различие лишь в глубине ямы. В случае валентных сил яма в сотни раз глубже.


Взаимодействие молекул

Молекулы взаимно притягиваются, в этом невозможно сомневаться. Если бы в какое-то мгновение они перестали притягиваться друг к другу, все жидкие и твердые тела распались бы на молекулы.

Молекулы взаимно отталкиваются, и это несомненно, так как иначе жидкости и твердые тела сжимались бы с необыкновенной легкостью.

Между молекулами действуют силы, во многом похожие на силы между атомами, о которых говорилось выше. Кривая потенциальной энергии, которую мы только что рисовали для атомов, правильно передает основные черты взаимодействия молекул. Однако между этими взаимодействиями имеются и существенные различия.

Сравним, например, равновесное расстояние между атомами кислорода, образующими молекулу, и атомами кислорода двух соседних молекул, притянувшихся в затвердевшем кислороде до равновесного положения. Различие будет очень заметным: атомы кислорода, образующие молекулу, устанавливаются на расстоянии 1,2 Å, атомы кислорода разных молекул подходят друг к другу на 2,9 Å.

Подобные результаты получаются и для других атомов. Атомы чужих молекул устанавливаются дальше один от другого, чем атомы одной молекулы. Поэтому молекулы легче оторвать одну от другой, чем атомы от молекулы, причем различия в энергиях много больше разницы в расстояниях. Если энергия, необходимая для разрыва связи между атомами кислорода, образующими молекулу, составляет около 100 ккал/моль, то энергия на растаскивание молекул кислорода меньше 2 ккал/моль.

Значит, на кривой потенциальной энергии молекул "яма" лежит дальше от вертикальной оси и, кроме того, "яма" гораздо менее глубока.

Однако этим не исчерпывается различие взаимодействия атомов, образующих молекулу, и взаимодействия молекул.

Химики показали, что атомы сцепляются в молекулу с вполне определенным числом других атомов. Если два атома водорода образовали молекулу, то третий атом уже не присоединится к ним. Атом кислорода в воде соединен с двумя атомами водорода и присоединить к ним еще один невозможно.

Ничего подобного мы не находим в межмолекулярном взаимодействии. Притянув к себе одного соседа, молекула ни в какой степени не теряет своей "притягательной силы". Подход соседей будет происходить до тех пор, пока хватит места.

Что значит "хватит места"? Разве молекулы - это что-то вроде яблок или яиц? Конечно, в некотором смысле такое сравнение оправдано: молекулы - физические тела, обладающие определенными "размерами" и "формой". Равновесное расстояние между молекулами и есть не что иное, как "размеры" молекул.


Как выглядит тепловое движение

Взаимодействие между молекулами может иметь большее или меньшее значение в "жизни" молекул.

Три состояния вещества - газообразное, жидкое и твердое - различаются одно от другого той ролью, которую в них играет взаимодействие молекул.

Слово "газ" придумано учеными. Оно произведено от греческого слова "хаос" - беспорядок.

И действительно, газообразное состояние вещества является примером существующего в природе полного, совершенного беспорядка во взаимном расположении и движении частиц. Нет такого микроскопа, который позволил бы увидеть движение газовых молекул, но, несмотря на это, физики могут достаточно детально описать жизнь этого невидимого мира.

В кубическом сантиметре воздуха при нормальных условиях (комнатная температура и атмосферное давление) находится огромное число молекул, примерно 2,5*1019 (т. е. 25 миллиардов миллиардов молекул). На каждую молекулу приходится объем 4*10-20 см3, т. е. кубик со стороной примерно 3,5*10-7 см = 35 Å. Однако молекулы очень малы. Например, молекулы кислорода и азота - основная часть воздуха - имеют средний размер около 4 Å.

Таким образом, среднее расстояние между молекулами в 10 раз больше размера молекулы. А это в свою очередь означает, что средний объем воздуха, на который приходится одна молекула, примерно в 1000 раз больше объема самой молекулы.

Представьте себе ровную площадку, на которой беспорядочно разбросаны монетки, причем на площадь в 1 м2 приходится в среднем сто монеток. Это значит одна-две монетки на страницу книги, которую вы читаете. Приблизительно так же редко расположены газовые молекулы.

Каждая молекула газа находится в состоянии непрерывного теплового движения.

Проследим за одной молекулой. Вот она стремительно движется куда-то вправо. Если бы на ее пути не встретилось препятствий, то молекула с той же скоростью продолжала бы свое движение по прямой линии. Но путь молекулы пересекают ее бесчисленные соседи. Столкновения неминуемы, и молекулы разлетаются, как два столкнувшихся биллиардных шара. В какую сторону отскочит наша молекула? Приобретет или потеряет она свою скорость? Все возможно: ведь встречи могут быть самые различные. Удары возможны и спереди и сзади, и справа и слева, и сильные и слабые. Ясно, что, подвергаясь таким беспорядочным соударениям при этих случайных встречах, молекула, за которой мы наблюдаем, будет метаться во все стороны по сосуду, в котором заключен газ.

Какой путь удается молекулам газа пробежать без столкновения?

Он зависит от размеров молекул и от плотности газа. Чем больше размеры молекул и число их в сосуде, тем чаще они будут сталкиваться. Средняя длина пути, пробегаемого молекулой без соударения,- она называется средней длиной пробега - равна при обычных условиях 11*10-6 см = 1100 Å для молекул водорода и 5*10-6 см=500 Å для молекул кислорода. 5*10-6 см - двадцатитысячная доля миллиметра, расстояние очень малое, но по сравнению с размерами молекул оно далеко не мало. Пробегу 5*10-6 см для молекулы кислорода соответствует в масштабе у биллиардного шара расстояние в 10 м.

Стоит обратить внимание на особенности движения молекул в сильно разреженном газе (вакууме). Движение молекул, "образующих вакуум", меняет свой характер, когда длина свободного пробега молекулы становится больше размеров сосуда, в котором находится газ. Тогда молекулы редко сталкиваются между собой и совершают свое путешествие прямыми зигзагами, ударяясь то об одну, то о другую стенку сосуда.

Как только что было сказано, в воздухе при атмосферном давлении длина пробега равна 5*10-6 см. Если увеличить ее в 107 раз, то она составит 50 см, т. е. будет заметно больше среднего по размерам сосуда. Поскольку длина пробега обратно пропорциональна плотности, а следовательно, и давлению, то давление для этого должно составлять 10-7 атмосферного или примерно 10-4 мм рт. ст.

Даже межпланетное пространство не является совсем Пустым. Но плотность вещества в нем составляет около 5*10-24г/см3. Основная доля межпланетного вещества - атомарный водород. В настоящее время считается, что в космосе приходится но нескольку атомов водорода на 1 см3. Если увеличить молекулу водорода до размеров горошины и поместить такую "молекулу" в Москве, то ее ближайшая "космическая соседка" окажется в Туле.

Строение жидкости существенно отличается от строения газа, молекулы которого находятся далеко одна от другой и лишь изредка сталкиваются. В. жидкости молекулы постоянно находятся в непосредственной близости. Молекулы жидкости расположены, как картофелины в мешке. Правда, с одним отличием: молекулы жидкости находятся в состоянии непрерывного хаотического теплового движения. Из-за большой тесноты они не могут передвигаться так свободно, как молекулы газа. Каждая "топчется" все время почти на одном и том же месте в окружении одних и тех же соседей и только понемногу перемещается по объему, занятому жидкостью. Чем более вязкая жидкость, тем это перемещение медленней. Но даже в такой "подвижной" жидкости, как вода, молекула сместится на 3 Å за то время, которое нужно газовой молекуле для пробега в 700 Å.

Совсем решительно расправляются силы взаимодействия между молекулами с их тепловым движением в твердых телах. В твердом вещества молекулы практически все время находятся в неизменном положении. Тепловое движение сказывается только в том, что молекулы непрерывно колеблются около положений равновесия. Отсутствие систематических перемещений молекул и есть причина того, что мы называем твердостью. Действительно, если молекулы не меняют соседей, то тем более остаются в неизменной связи одна с другой отдельные части тела.


Сжимаемость тел

Как дождевые капли барабанят по крыше, так бьются о стенки сосуда молекулы газа. Число этих ударов огромно, и действие их, сливаясь воедино, и создает то давление, которое может двигать поршень двигателя, разорвать снаряд или надуть воздушный шар. Град молекулярных ударов - это атмосферное давление, это давление, заставляющее прыгать крышку кипящего чайника, это сила, выбрасывающая пулю из винтовки.

С чем же связано давление газа? Ясно, что давление будет тем больше, чем сильнее удар, наносимый одной молекулой. Не менее очевидно, что давление будет зависеть от числа ударов, наносимых в секунду. Чем больше молекул в сосуде, тем чаще удары, тем больше давление. Значит, прежде всего давление р данного газа пропорционально его плотности.

Если масса газа неизменна, то, уменьшая объем, мы в соответствующее число раз увеличиваем плотность. Значит, давление газа в таком закрытом сосуде будет обратно пропорционально объему. Или, иными словами, произведение давления на объем должно быть неизменным:

ρV = const.

Этот простой закон был открыт английским физиком Бойлем и французским ученым Мариоттом. Закон Бойля - Мариотта - один из первых количественных законов в истории физической науки. Разумеется, он имеет место при неизменной температуре.

По мере сжатия газа уравнение Бойля - Мариотта выполняется все хуже. Молекулы приближаются, взаимодействие между ними начинает сказываться на поведении газа.

Закон Бойля - Мариотта справедлив в тех случаях, когда вмешательство сил взаимодействия в жизнь молекул газа совершенно незаметно. Поэтому о законе Бойля - Мариотта говорят как о законе идеальных газов.

Прилагательное "идеальный" звучит несколько забавно по отношению к слову "газ". Идеальный - это значит совершенный, такой, что лучше быть не может.

Чем проще модель или схема, тем идеальнее она для физика. Упрощаются расчеты, легкими и ясными становятся объяснения физических явлений. Термин "идеальный газ" относится к простейшей схеме газа. Поведение достаточно разреженных газов практически неотличимо от поведения идеальных газов.

Сжимаемость жидкостей гораздо меньше, чем сжимаемость газов. В жидкости молекулы уже находятся в "соприкосновении". Сжатие состоит лишь в улучшении "упаковки" молекул, а при очень больших давлениях - в спрессовке самой молекулы. Насколько силы отталкивания затрудняют сжатие жидкости, видно из следующих цифр. Повышение давления от одной до двух атмосфер влечет за собой уменьшение объема газа вдвое, в то время как объем воды изменяется на 1/20 000, а ртути - всего на 1/250 000.

Даже огромное давление на глубинах океана неспособно сколько-нибудь заметно сжать воду. Действительно, давление в одну атмосферу создается столбом воды в десять метров. Давление под слоем воды в 10 км равно 1000 атмосфер. Объем воды уменьшается на 1000/20 000, т. е. на 1/20.

Сжимаемость твердых тел мало отличается от сжимаемости жидкости. Это и понятно - в обоих случаях молекулы уже соприкасаются, и сжатие может быть достигнуто лишь за счет дальнейшего сближения уже сильно отталкивающихся молекул. Сверхвысокими давлениями в 50-100 тысяч атмосфер удается сжать сталь на 1/1000, свинец - на 1/7 долю объема.

Из этих примеров видно, что в земных условиях не удается сколько-нибудь значительно сжать твердое вещество.

Но во Вселенной есть тела, где вещество сжато несравненно сильнее. Астрономы открыли существование звезд, плотность вещества в которых доходит до 10/см3. Внутри этих звезд - их называют белыми карликами ("белые" - по характеру светимости "карлики" - из-за относительно малых размеров) - должно поэтому иметь место огромное давление.


Поверхностные силы

Можно ли выйти сухим из воды? Конечно, для этого нужно смазаться несмачивающимся водой веществом.

Натрите палец парафином и опустите в воду. Когда вы его вынете, окажется, что воды на пальце нет, если не считать двух-трех капелек. Небольшое движение - и капельки стряхиваются.

В этом случае говорят: вода не смачивает парафин. Ртуть ведет себя таким образом по отношению почти ко всем твердым телам: ртуть не смачивает кожу, стекло, дерево...

Вода более капризна. Она тесно льнет к одним телам и старается не соприкасаться с другими. Вода не смачивает жирные поверхности, но хорошо смачивает чистое стекло. Вода смачивает дерево, бумагу, шерсть.

Если капельку воды нанести на чистое стекло, то она растечется и образует очень тонкую лужицу. Если такую же капельку опустить на парафин, то она так и останется капелькой почти сферической формы, чуть придавленной силой тяжести.

К веществам, "пристающим" почти ко всем телам, относится керосин. Стремясь растечься по стеклу или металлу,; керосин способен выползать из плохо закрытого сосуда. Лужица пролитого керосина может на долгое время отравить существование: керосин захватит большую поверхность, заползет в щели, проникнет в одежду. Поэтому так трудно избавиться от его малоприятного запаха.

Несмачивание тел может привести к любопытным явлениям. Возьмите иголку, смажьте ее жиром и аккуратно положите плашмя на воду. Иголка не утонет. Внимательно всматриваясь, можно заметить, что иголка продавливает воду и спокойно лежит в образовавшейся ложбинке. Однако достаточно легкого нажатия, и иголка пойдет ко дну. Для этого нужно чтобы значительная ее часть оказалась в воде.

Это интересное свойство используется насекомыми, быстро бегающими по воде, не замочив лапок.

Смачивание используется при флотационном обогащении руд. Слово "флотация" значит "всплывание". Сущность явления состоит в следующем. Тонко измельченную руду загружают в чан с водой, туда добавляют небольшое количество специального масла, которое должно. обладать свойством смачивать крупинки полезного ископаемого и не смачивать крупинки "пустой породы" (так называют" ненужную часть руды). При перемешивании крупинки полезного ископаемого обволакиваются маслянистой пленкой.

В черную кашу из руды воды и масла вдувается воздух. Образуется множество мелких пузырьков воздуха - пена. Пузырьки воздуха всплывают. Процесс флотации основан на том, что покрытые маслом крупинки цепляются за воздушные пузырьки. Крупный пузырек выносит крупинку вверх, как воздушный шар.

Полезное ископаемое переходит в пену на поверхность. Пустая порода остается на дне. Пену снимают и направляют в дальнейшую обработку для получения так называемого "концентрата", который содержит в десятки раз меньшую долю пустой породы.

Силы сцепления поверхностей способны нарушить уравнивание жидкости в сообщающихся сосудах. Справедливость этого очень легко проверить.

Если тоненькую (доля миллиметра в, диаметре) стеклянную трубочку опустить в воду, то в нарушение закона сообщающихся сосудов вода в ней быстро начнет подниматься вверх, и уровень ее установится существенно выше, чем в широком сосуде (рис. 2.4).


Рис. 2.4

Что же произошло? Какие силы удерживают вес поднявшегося столба жидкости? Подъем произведен силами сцепления воды со стеклом.

Силы поверхностного сцепления отчетливо проявляются лишь тогда, когда жидкость поднимается в достаточно тонких трубках. Чем уже трубочка, тем выше поднимается жидкость, тем отчетливее явление. Название этих поверхностных явлений связано с названием трубочек. Канал в такой трубке имеет диаметр, измеряющийся долями миллиметра; такую трубку называют капиллярной (что значит в переводе: "тонкой, как волос"). Явление подъема жидкости в тонких трубках называется капиллярностью.

На какую же высоту способны поднять жидкость капиллярные трубки? Оказывается, в трубке диаметром 1 мм вода поднимается на высоту 1,5 мм. При диаметре 0,01 мм высота подъема возрастает во столько же раз, во сколько уменьшился диаметр трубки, т. е. до 15 см.

Разумеется, подъем жидкости возможен лишь при условии смачивания. Нетрудно догадаться, что ртуть не будет подниматься в стеклянных трубках. Наоборот, ртуть в стеклянных трубках опускается. Ртуть так не "терпит" соприкосновения со стеклом, что стремится сократить общую поверхность до того минимума, который разрешает сила тяжести.

Существует множество тел, которые представляют собой нечто вроде системы тончайших трубок. В таких телах всегда наблюдаются капиллярные явления.

Целая система длинных каналов и пор имеется у растений и деревьев. Диаметры этих каналов меньше сотых долей миллиметра. Благодаря этому капиллярные силы поднимают почвенную влагу на значительную высоту и разносят воду по телу растения.

Очень удобная вещь - промокательная бумага. Вы сделали кляксу, а надо перевернуть страницу. Не ждать ведь, пока клякса высохнет! Берется листик промокательной бумаги, конец его погружается в каплю, и чернила быстро бегут кверху против силы тяжести.

Происходит типичное капиллярное явление. Если рассмотреть промокательную бумагу в микроскоп, то можно увидеть ее структуру. Такая бумага состоит из неплотной сетки бумажных волокон, образующих друг с другом тонкие и длинные каналы. Эти каналы и играют роль капиллярных трубочек.

Такая же система длинных пор или каналов, образованных волокнами, имеется в фитилях. По фитилю поднимается кверху керосин в лампах. С помощью фитиля можно создать и сифон, опустив фитиль одним концом в неполный стакан жидкости так, чтобы другой конец перевешивающийся через борт, был ниже первого (рис. 2.5).


Рис. 2.5

В технологии красильного производства тоже часто используют способность тканей затягивать в себя жидкость тонкими каналами, образованными нитями ткани.

Но мы еще ничего не сказали о молекулярном механизме этих интересных явлений.

Различия в поверхностных силах превосходно объясняются межмолекулярными взаимодействиями.

Капля ртути не растекается по стеклу. Это происходит по той причине, что энергия взаимодействия атомов ртути между собой больше энергии связи атомов стекла и ртути. По этой же причине ртуть не поднимается в узких капиллярах.

С водой дело обстоит иначе. Оказывается, что атомы водорода молекул воды охотно цепляются за атомы кислорода окиси кремния, из которой в основном состоит стекло. Межмолекулярные силы вода - стекло больше межмолекулярных сил вода - вода. Поэтому вода растекается по стеклу и поднимается в стеклянных капиллярах.

Поверхностные силы, вернее энергию связи (глубина ямы на рис. 2.1), для разных пар веществ можно и измерить, и вычислить. Разговор о том, как это делается, завел бы нас слишком далеко.

Категория: ФИЗИКА | Добавил: admin | Теги: методическая копилка учителя, дополнительный материал к урокам фи, задания по физике, дидактический материал по физике
Просмотров: 1723 | Загрузок: 0 | Рейтинг: 5.0/1
Поиск

ИНФОРМАТИКА В ШКОЛЕ

ЭНЦИКЛОПЕДИЯ
   ПРОФЕССОРА ФОРТРАНА


ЭНЦИКЛОПЕДИЯ
   ШКОЛЬНИКА "КОМПЬЮТЕР"


ПРАКТИКУМ ПО
   МОДЕЛИРОВАНИЮ.
   7-9 КЛАССЫ


РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ
   ПО ПРОГРАММИРОВАНИЮ
   НА ЯЗЫКЕ PASCAL


ПОДГОТОВКА К ЕГЭ
   ПО ИНФОРМАТИКЕ


ДИАГНОСТИЧЕСКИЕ
   РАБОТЫ ПО
   ИНФОРМАТИКЕ. 11 КЛАСС


ГЕОГРАФИЯ В ШКОЛЕ

ГЕОГРАФИЧЕСКАЯ
   ЭНЦИКЛОПЕДИЯ


ЗАНИМАТЕЛЬНАЯ
   ГЕОГРАФИЯ


ЭНЦИКЛОПЕДИЯ
   ГЕОГРАФИЯ РОССИИ


СПРАВОЧНИК ДЛЯ ШКОЛЬНИКОВ
   ПО ГЕОГРАФИИ


ЗАГАДКИ ТОПОНИМИКИ

ФИТОГЕОГРАФИЯ ДЛЯ
   ШКОЛЬНИКОВ


РУССКИЕ
   ПУТЕШЕСТВЕННИКИ


ПЕРВООТКРЫВАТЕЛИ

ГЕОГРАФИЯ ЧУДЕС

СОКРОВИЩА ЗЕМЛИ

МОРЯ И ОКЕАНЫ

ВУЛКАНЫ

СТИХИЙНЫЕ БЕДСТВИЯ

ЗАГАДКИ МАТЕРИКОВ И
   ОКЕАНОВ


ЗНАКОМЬТЕСЬ: ЕВРОПА

ЗНАКОМЬТЕСЬ: АФРИКА

ПОГОДА. ЧТО, КАК И
   ПОЧЕМУ?


ШКОЛЬНИКАМ О
   СЕВЕРНОМ СИЯНИИ


ГЕОГРАФИЯ.
   ЗЕМЛЕВЕДЕНИЕ. 6 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ
   ПО ГЕОГРАФИИ


ТИПОВЫЕ ВАРИАНТЫ
   КОНТРОЛЬНЫХ РАБОТ
   В ФОРМАТЕ ЕГЭ


ПОДГОТОВКА К ЕГЭ
   ПО ГЕОГРАФИИ


АСТРОНОМИЯ В ШКОЛЕ

КАРТОЧКИ ПО
   АСТРОНОМИИ


ЭНЦИКЛОПЕДИЯ
   ШКОЛЬНИКА "КОСМОС И
   ВСЕЛЕННАЯ"


ЗАДАЧИ ДЛЯ ОЛИМПИАДЫ
   ПО АСТРОНОМИИ. 10-11 КЛАССЫ
   КЛАССЫ"


ПРОВЕРОЧНЫЕ РАБОТЫ
   ПО АСТРОНОМИИ


ОБЩЕСТВОЗНАНИЕ

ИНТЕРЕСНОЕ
   ОБЩЕСТВОВЕДЕНИЕ


ЧЕЛОВЕКОВЕДЕНИЕ
   ДЛЯ ШКОЛЬНИКОВ


РАБОЧИЕ МАТЕРИАЛЫ ПО
   ОБЩЕСТВОЗНАНИЮ.
   8 КЛАСС


ТЕМАТИЧЕСКИЕ
   КОНТРОЛЬНЫЕ РАБОТЫ
   ПО ОБЩЕСТВОЗНАНИЮ.
   8 КЛАСС


ПОДГОТОВКА К ЕГЭ

ТИПОВЫЕ ТЕСТЫ В
   ФОРМАТЕ ЕГЭ


ОСНОВЫ РЕЛИГИОЗНЫХ КУЛЬТУР И СВЕТСКОЙ ЭТИКИ

МАТЕРИАЛЫ ДЛЯ
   УЧИТЕЛЯ


ХРИСТИАНСТВО

ЖИТИЯ СВЯТЫХ
    В КАРТИНКАХ


ПУТЕВОДИТЕЛЬ ПО МИРОВОЙ ХУДОЖЕСТВЕННОЙ КУЛЬТУРЕ

БОГИ ОЛИМПА

ЗАНИМАТЕЛЬНАЯ
   МИФОЛОГИЯ


РУССКИЕ НАРОДНЫЕ
   ПРОМЫСЛЫ


ШКОЛЬНИКАМ О МУЗЕЯХ

СКУЛЬПТУРА

ЧУДЕСА СВЕТА

ДОСТОПРИМЕЧАТЕЛЬНОСТИ
   МОСКВЫ


ДОСТОПРИМЕЧАТЕЛЬНОСТИ
   САНКТ-ПЕТЕРБУРГА



ИЗО В ШКОЛЕ

ОСНОВЫ РИСУНКА ДЛЯ
   УЧЕНИКОВ 5-8 КЛАССОВ


УРОКИ ПОШАГОВОГО
   РИСОВАНИЯ


РУССКИЕ ЖИВОПИСЦЫ


ФИЗКУЛЬТУРА В ШКОЛЕ

Я УЧИТЕЛЬ ФИЗКУЛЬТУРЫ

ИСТОРИЯ ОЛИМПИЙСКИХ
   ИГР


УРОКИ КУЛЬТУРЫ
   ЗДОРОВЬЯ


УПРАЖНЕНИЯ И ИГРЫ
   С МЯЧОМ


УРОКИ ФУТБОЛА

АТЛЕТИЧЕСКАЯ
   ГИМНАСТИКА


ЛЕЧЕБНАЯ ФИЗКУЛЬТУРА
   В СПЕЦИАЛЬНОЙ ГРУППЕ


УПРАЖНЕНИЯ НА
   РАСТЯЖКУ


АТЛЕТИЗМ БЕЗ ЖЕЛЕЗА


ТЕХНОЛОГИЯ В ШКОЛЕ

РАБОЧИЕ МАТЕРИАЛЫ ПО
   ТЕХНОЛОГИИ ДЛЯ
   ДЕВОЧЕК. 6 КЛАСС


УРОКИ КУЛИНАРИИ В
   5 КЛАССЕ


КАРТОЧКИ ДЛЯ
    ОПРОСА ПО ТЕХНОЛОГИИ. 5 КЛАСС


ПРАКТИКУМ ПО
   СЛЕСАРНЫМ РАБОТАМ


ВЫПИЛИВАНИЕ ИЗ ФАНЕРЫ


ЭРУДИТ-КОМПАНИЯ

МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЕЙ

АФОРИЗМЫ

АФОРИЗМЫ ОБ
   ОБРАЗОВАНИИ


АФОРИЗМЫ ОБ УЧИТЕЛЕ
   И УЧЕНИКЕ


Яндекс.Метрика Copyright MyCorp © 2024 Рейтинг@Mail.ru